Global Access to Large Distributed Data Sets using Data Webs Employing Photonic Data Services

April 8, 2003

R. L. Grossman, Y. Gu, D. Hanley, X. Hong, J. Levera, M. Mazzucco, University of Illinois at Chicago

D. Lillethun, J. Mambretti, and J. Weinberger Northwestern University
Distributed Data – More and More Discoveries will be Across Databases

- Pearson’s Law: The usefulness of a column of data varies as the square of the number of columns it is compared to.
Data Grids vs. Data Webs

What is more valuable: other peoples’ cycles or data?

Browsing & Casual Exploration

Collaborations

Data Grids
- Security
- Authorization
- Scheduling

Distributed Computer

Data Webs
- Searching
- Exploration
- Casual correlation

Web Based Computing
Example 1. Photonic DataSpace

- Data intensive computing over photonic networks
- Interactive exploration of remote Gigabyte size data sets
- Specialized transport and merging over light paths
Example 2. Molecular DataSpace

- Replication of the protein data bank (PDB).
- Chemical libraries of small organics molecules.
- How do you overlay other peoples data on your own?
- with distributed data mining.
The Photonic Data Services Stack

1. Physical

2. Photonic Path Serv. – ODIN, THOR, ...

3. IP

4. Transport – TCP, UDP, SABUL, ...

5. Data Web Serv
 5a. Data Web Serv
 5b. Soap/XML Services
 5c. Data Grid Services

6. Data Web Applications
Photonic Data Services - Status

- Developed reliable, friendly hybrid TCP/UDP protocols (Layer 4 - SABUL)
- Developed striped Sabul (P-SABUL)
- Linked Layer 2 Path Services (ODIN and Thor) with Layer 4 Transport Services (SABUL, P-SABUL)
- Developed high performance distributed data services (Lambda Joins - Layer 5)
- Developed photonic applications (Layer 6)
Key Data Web Protocols & Services

1. Data & metadata selection (DWTP, SQL)
 – using XML metadata, range queries & sampling
 – based upon Data Web Transport Protocol (DWTP)

2. Data transport (DWTP)
 – DWTP and XML/SOAP

3. Data merging by universal key
 – globally unique distributed keys (UCKs) for joining distributed data

4. Data analysis and mining (PMML)
 – using algorithms for clustering, regression, etc.
Layer 5. Data Services – Moving Records

<table>
<thead>
<tr>
<th>Approach</th>
<th>Implementations</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOAP/XML</td>
<td>Multiple</td>
<td>Scales poorly</td>
</tr>
<tr>
<td>Data Web Transfer Prot.</td>
<td>UIC/LAC, DWTP Servers</td>
<td>Emerging technology</td>
</tr>
<tr>
<td>Grid Services</td>
<td>GLOBUS</td>
<td>File-based (not records)</td>
</tr>
<tr>
<td>JDBC, ODBC</td>
<td>Multiple</td>
<td>Different goals</td>
</tr>
</tbody>
</table>
Data Web Transfer Protocol (DWTP)

- interoperates & supports SOAP/XML-based web services
- protocol designed for data
- supports data, metadata, and keys
- separates control from data channels
- can subset data by rows or columns
- mechanisms for sampling, merging data by key, working with missing values
Example: DWTP Session

- **Discover** DWTP server containing appropriate data using **web services**
- DSTP client connects to DWTP server
- retrieve **data set metadata** using TCP
- set **data set**
- retrieve **attribute metadata** using TCP
- retrieve 25 columns of data using 20% **subset** of rows using SABUL
Experimental Results:
PDS Data Services (Layer 5)

<table>
<thead>
<tr>
<th>Rand %</th>
<th>Match %</th>
<th>Time (sec)</th>
<th>Data Rate Mb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>99</td>
<td>66.3</td>
<td>434</td>
</tr>
<tr>
<td>10</td>
<td>92</td>
<td>65.7</td>
<td>438</td>
</tr>
<tr>
<td>20</td>
<td>82</td>
<td>64.2</td>
<td>449</td>
</tr>
<tr>
<td>33</td>
<td>79</td>
<td>65.1</td>
<td>442</td>
</tr>
</tbody>
</table>

- Best effort lambda join (distributed join)
- Experiments between Chicago and Amsterdam using 10 Gb/s link (cpu bound)
Layer 4. Transport – Moving Bits

<table>
<thead>
<tr>
<th>Approach</th>
<th>Implementations</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve TCP</td>
<td>Multiple</td>
<td>Will it scale?</td>
</tr>
<tr>
<td>Striped TCP</td>
<td>GridFTP, PSocket</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Reliable, Friendly UDP</td>
<td>SABUL, FAST, TSUNAMI</td>
<td>Make friendly</td>
</tr>
<tr>
<td>(TCP control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped UDP</td>
<td>P-SABUL</td>
<td>Interface to parallel I/O</td>
</tr>
</tbody>
</table>

- **SABUL, FAST, TSUNAMI**
- **GridFTP, PSocket**
- **Multiple**
- **Will it scale?**
- **Improve Performance**
- **Make friendly**
- **Interface to parallel I/O**
Layer 4 - Comparing Reliable UDP & Striped TCP

<table>
<thead>
<tr>
<th>Data Set (MBs)</th>
<th>GridFTP (Mb/s)</th>
<th>SABUL (Mb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>94.9</td>
<td>527</td>
</tr>
<tr>
<td>500</td>
<td>246</td>
<td>476</td>
</tr>
<tr>
<td>1000</td>
<td>324</td>
<td>506</td>
</tr>
<tr>
<td>2000</td>
<td>315</td>
<td>506</td>
</tr>
</tbody>
</table>

- Experiments between Chicago and Amsterdam over OC-12
Layer 4- PDS Data Transport: Striped Reliable UDP Chicago - Amsterdam

<table>
<thead>
<tr>
<th>TCP Stream</th>
<th>GridFTP</th>
<th>SABUL Stream 1</th>
<th>SABUL Stream 2</th>
<th>SABUL Stream 3</th>
<th>Striped SABUL Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.36 Mb/s</td>
<td>324 MB/s</td>
<td>902.8 Mb/s</td>
<td>902.9 Mb/s</td>
<td>907.1 Mb/s</td>
<td>2712.8 Mb/s</td>
</tr>
</tbody>
</table>

- Three node cluster in Chicago connected to three node cluster in Amsterdam connected with 10 Gb/s link