Flash Performance in Storage Systems

Bill Moore
Chief Engineer, Storage Systems
Sun Microsystems
Flash Performance in Storage Systems

Disk to CPU Discontinuity

Moore’s Law is out-stripping disk drive performance (rotational speed)
As a result, servers and storage systems are hopelessly unbalanced between CPU/controller capability and storage pool performance
The objective of modern systems design is to rebalance the CPU-storage ecosystem while optimizing both low $/GB and $/IOPS
CPU-Storage Bottleneck

SunFire x4450 Memory Hierarchy

- Xeon 7350 2.93Mhz (16 cores)
- Quad Channel FB-DIMM
- 32 DIMM Slots
- DDR2 667
- SAS 146GB 10RPM
- 8 HDDs

Flash Performance:
- 845,000 IOPS
- 140,000 IOPS
- 1,600 IOPS
Traditional Architecture for Performance

- Store working set in DRAM to avoid latency
- Use 1-2G (Netapp) or 1-2T (EMC DMX) of battery-backed DRAM to buffer synchronous writes
- Huge pool of high RPM, high power spindles
- “Short-stroked” so data lives on outer tracks
- Reduce head seeks, increase IOPS
Example: TPC-C Benchmark
Lots of Disk, Lots of DRAM

BIG BLUES: IBM System x3950 M2*
Total Hardware Cost: $2,911,464

The Hidden Performance Cost:
512GB DRAM (64 x 8GB DIMMs): $960,000
47.7TB HDD (1344 x 36.4GB 15K RPM HDDs): $1,198,848

74% of the cost is for Storage Performance
Flash Background

- 2004 flash cost as much as DRAM
- 2008 flash now a fraction of the cost
 > But still much more than rotating media
- Very low-latency reads (~50μs)
- Relatively slow writes (> 200μs)
- Limited write/erase cycles (100k-1m)
- Compelling for storage market in the right package:
 > Fronted by DRAM to buffer the write latency
 > DRAM backed by super-capacitor to drain on power fail
 > Multiple channels of Flash to increase parallelism
- Complicated to integrate intelligently
 > Not just another tier in a traditional HSM model
Example: Read-biased Flash in a Memory Hierarchy

DRAM, 15K RPM Drives and Read SSD: Price and Performance

<table>
<thead>
<tr>
<th>$/GB</th>
<th>DRAM</th>
<th>SSD</th>
<th>15K RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>10</td>
<td>1000</td>
</tr>
</tbody>
</table>

µsecs/Read
SSD Benchmark Relative Performance

Relative Performance

Cycle life for SLC is 10X over MLC
Sun's Flash Architecture

- Flash devices in 2.5” or 3.5” or mini-DIMM form factor
 - Writes buffered by DRAM backed by supercapacitors
 - Devices specifically optimized for read or write
 - Enterprise-grade: 1M w/erase cycles, 3-5 yr lifetime

- Used in place of NVRAM for ZFS Intent Log (ZIL)
 - Write-biased (aka “Logzilla”)
 - Arbitrary scale: put in JBOD instead of slot in head node
 - No battery issues for serviceability
 - First release will support unlimited 24G write-biased SSDs

- Used to extend the ZFS cache (ARCL2)
 - Read-biased (aka “Readzilla”)
 - Extends ZFS DRAM cache for reads and writes
 - First release will support up to 768G of read-biased SSD (!)
ZFS Hybrid Storage Pool

- Storage is transparently managed as a single pool with an optimized hierarchy
- ZFS understands how to leverage the attributes of each type of device and function
- Simple administrative policy knobs provide resource control
- Best $/IOP, $/G, Power/G
- Takes full advantage of the SAS/SATA reliability fallacy (see Google disk failure results)
Flash Performance in Storage Systems

ZFS Hybrid Pool Example
(announced at recent IDF Shanghai)

4 Xeon 7350 Processors (16 cores)
32GB FB DDR2 ECC DRAM
OpenSolaris with ZFS

(7) 146GB 10,000 RPM SAS Drives
(5) 400GB 4200 RPM SATA Drives
(1) 32G SSD ZIL Device
(1) 80G SSD Cache Device
ZFS Hybrid Pool Example
(announced at recent IDF Shanghai)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Hybrid Storage Pool (DRAM + Read SSD + Write SSD + 5x 4200 RPM SATA)</th>
<th>Traditional Storage Pool (DRAM+ 7x 10K RPM 2.5")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read IOPs</td>
<td>3.2x</td>
<td>11%</td>
</tr>
<tr>
<td>Write IOPs</td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>Storage Power (Watts)</td>
<td></td>
<td>4.9x</td>
</tr>
<tr>
<td>Raw Capacity (TB)</td>
<td></td>
<td>2x</td>
</tr>
</tbody>
</table>

- If NVRAM were used, Hybrid wins on cost too
- For large configs (e.g. 48T–750T+) cost is entirely amortized
ZFS: The First I/O Stack Optimized for Flash

USER
- Filesystem Consumers
- Device Consumers
- FishWorks Management UI
- Higher-Level Data Services

KERNEL
- libzfs
- /dev/zfs

Interface Layer
- ZPL
- ZVOL
- /dev/zfs

Transactional Object Layer
- ZIL
- ZAP
- DMU
- DSL
- Traversal

Pooled Storage Layer
- ARC
- ZIO
- VDEV
- Configuration

Logzilla
- Readzilla
- DISK
- DISK
- DISK